

Choosing hosting platforms

PLAsTiCC Workshop, July/2017

Emille E. O. Ishida

*Laboratoire de Physique de Clermont - Université Clermont-Auvergne
Clermont Ferrand, France*

Goals:

- 1) Increase the participation of non-astronomers
- 2) Facilitate posterior usage of results
- 3) Answer multiple questions

Option 1: Kaggle

How it works:

- proposers work with Kaggle team to check the data (~ 6 weeks)
- participants submit **responses**
- metric is calculated by the back-end for each entry
- there is a kernel tool, with pre-loaded packages in R and Python which users **can** use
- for scientific challenges, the code must be *open source*
- prizes are not mandatory, but advisable
- it is possible to make Amazon cores available to the users
(Kaggle team might be willing to provide it without extra charge if they think the challenge is of their interest)

Option 1: Kaggle

How it works:

- proposers work with Kaggle team to check the data (~ 6 weeks)
- participants submit **responses**
- metric is calculated by the back-end for each entry
- there is a kernel tool, with pre-loaded packages in R and Python which users **can** use
- for scientific challenges, the code must be *open source*
- prizes are not mandatory, but advisable
- it is possible to make Amazon cores available to the users
(Kaggle team might be willing to provide it without extra charge if they think the challenge is of their interest)

Pros:

- High visibility among non-astronomers
- already built community
- platform has already been tested in many different situations (expertise)
- Kaggle team provides support: data preparation, development of Q&A, metric
- integrated forum to talk with the participants
- participants can use any language they want

Option 1: Kaggle

How it works:

- proposers work with Kaggle team to check the data (~ 6 weeks)
- participants submit **responses**
- metric is calculated by the back-end for each entry
- there is a kernel tool, with pre-loaded packages in R and Python which users **can** use
- for scientific challenges, the code must be *open source*
- prizes are not mandatory, but advisable
- it is possible to make Amazon cores available to the users
(Kaggle team might be willing to provide it without extra charge if they think the challenge is of their interest)

Pros:

- High visibility among non-astronomers
- already built community
- platform has already been tested in many different situations (expertise)
- Kaggle team provides support: data preparation, development of Q&A, metric
- integrated forum to talk with the participants
- participants can use any language they want

Cons:

- using the provided kernels is **not obligatory**
- participants can use any language they want
- 1 challenge → 1 question
- good ideas might go unnoticed if they are not top listed

Option 1: Kaggle

How it works:

- proposers work with Kaggle team to check the data (~ 6 weeks)
- participants submit **responses**
- metric is calculated by the back-end for each entry
- there is a kernel tool, with pre-loaded packages in R and Python which users **can** use
- for scientific challenges, the code must be *open source*
- prizes are not mandatory, but advisable
- it is possible to make Amazon cores available to the users
(Kaggle team might be willing to provide it without extra charge if they think the challenge is of their interest)

Pros:

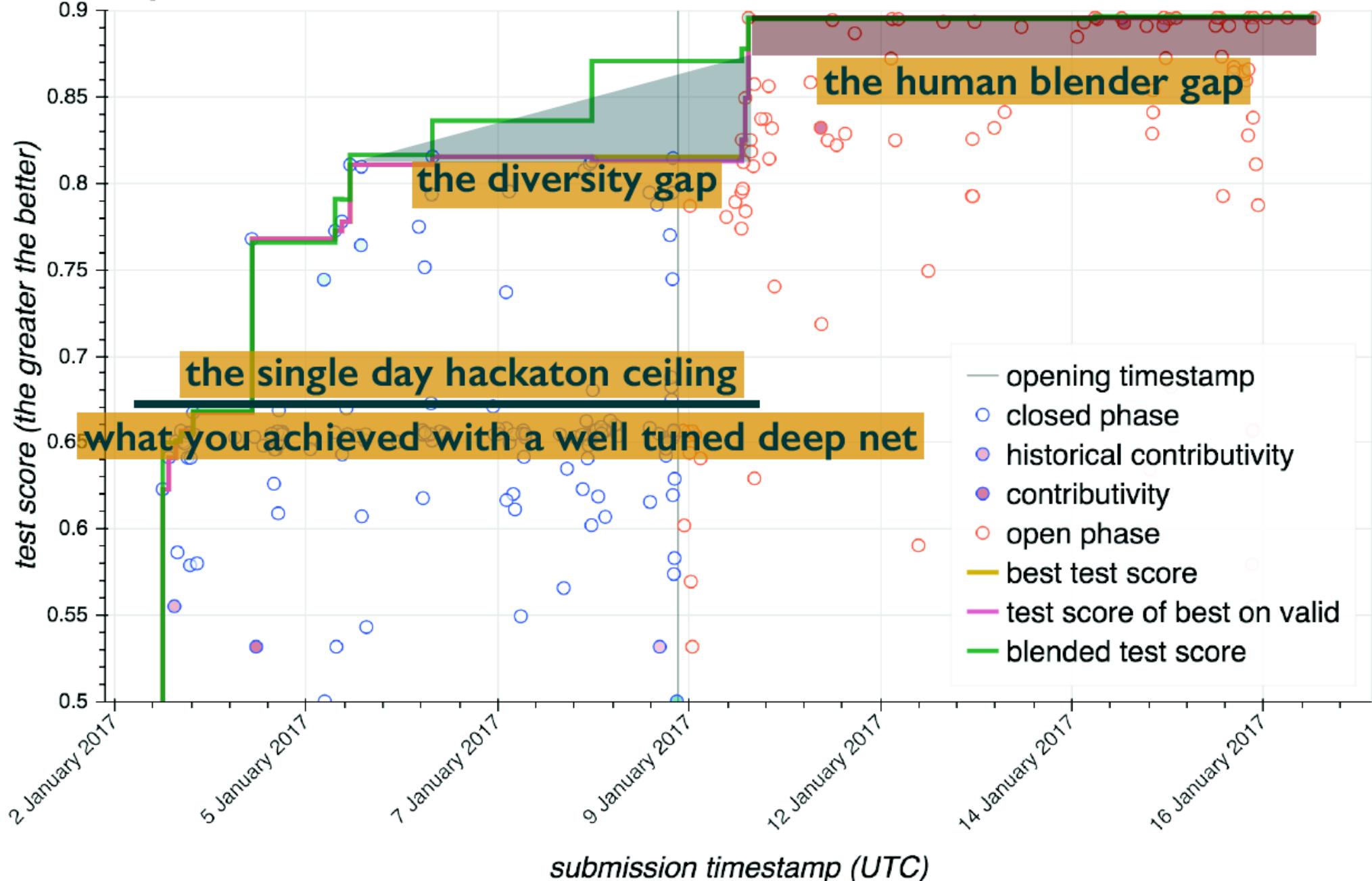
- High visibility among non-astronomers
- already built community
- platform has already been tested in many different situations (expertise)
- Kaggle team provides support: data preparation, development of Q&A, metric
- integrated forum to talk with the participants
- participants can use any language they want

Cons:

- using the provided kernels is **not obligatory**
- participants can use any language they want
- 1 challenge → 1 question
- good ideas might go unnoticed if they are not top listed

3 questions

U\$ 15 000,00


Option 2: RAMP

Rapid Analytics and Model Prototyping

How it works:

- proposers work with RAMP team to check the data and prepare a starting kit
- participants submit **codes**
- entire calculation is done by the back-end, forums are hosted at Slack
- all code must be *open source*, and in **Python**
- 3 phases:
 - 1st – hackday: the RAMP team and proposers meet with the participants
 - 2nd - close: normal challenge (prizes should be given at the end of this stage)
 - 3Rd - open: everyone see each others code and collaborate to improve the result

Hep detector anomalies test scores

Option 2: RAMP

Rapid Analytics and Model Prototyping

How it works:

- proposers work with RAMP team to check the data
- participants submit **codes**
- entire calculation is done by the back-end, forums are hosted at Slack
- all code must be *open source*
- 3 phases:
 - 1st – hackday: the RAMP team and proposers meet with the participants
 - 2nd - close: normal challenge (prizes should be given at the end of this stage)
 - 3Rd - open: everyone see each others code and collaborate to improve the result

Pros:

- Submitted codes are guarantee to run
- The open phase allows good ideas to be used, even if the complete entry is not a top one
- No limit in the number of questions per competition
- **We can use computational resources at CC-IN2P3, Lyon as a back-end** (*under negotiation*)
- RAMP team is willing to provide the assistance (including implementation at CC-IN2P3)

Option 2: RAMP

Rapid Analytics and Model Prototyping

How it works:

- proposers work with RAMP team to check the data
- participants submit **codes**
- entire calculation is done by the back-end, forums are hosted at Slack
- all code must be *open source*
- 3 phases:
 - 1st – hackday: the RAMP team and proposers meet with the participants
 - 2nd - close: normal challenge (prizes should be given at the end of this stage)
 - 3Rd - open: everyone see each others code and collaborate to improve the result

Pros:

- Submitted codes are guaranteed to run
- The open phase allows good ideas to be used, even if the complete entry is not a top one
- No limit in the number of questions per competition
- **We can use computational resources at CC-IN2P3, Lyon as a back-end** (*under negotiation*)
- RAMP team is willing to provide the assistance (including implementation at CC-IN2P3)

Cons:

- code must be in **Python**
- less visibility – it would require a larger effort on dissemination to reach non-astronomers
- *it should be allowed for outsiders to also participate in the open phase (?)*

Option 2: RAMP

Rapid Analytics and Model Prototyping

How it works:

- proposers work with RAMP team to check the data
- participants submit **codes**
- entire calculation is done by the back-end, forums are hosted at Slack
- all code must be *open source*
- 3 phases:
 - 1st – hackday: the RAMP team and proposers meet with the participants
 - 2nd - close: normal challenge (prizes should be given at the end of this stage)
 - 3Rd - open: everyone see each others code and collaborate to improve the result

Pros:

- Submitted codes are guaranteed to run
- The open phase allows good ideas to be used, even if the complete entry is not a top one
- No limit in the number of questions per competition
- **We can use computational resources at CC-IN2P3, Lyon as a back-end** (*under negotiation*)
- RAMP team is willing to provide the assistance (including implementation at CC-IN2P3)

Cons:

- code must be in **Python**
- less visibility – it would require a larger effort on dissemination to reach non-astronomers
- *it should be allowed for outsiders to also participate in the open phase (?)*

Next steps:

1) Characterize the data:

- how big the data will be?
- can we estimate the magnitude of computer resources necessary for 1 participant?

2) Define our expectations:

- how many questions we want to answer?
- how many prizes we will give?

3) Choose a hosting platform:

3.a) If we want more information on **Kaggle**:

- estimate computer resources and possibility to use Amazon servers
- get a more realistic estimation of costs

3.b) If we want more information on **RAMP**:

- invite someone from the RAMP team to one of our telecons
- estimate computer resources necessary (**ASAP**)
- formalized our request to use CC-IN2P3 and RAMP (there will be work in implementation for them)

3.c) Other options?

4) Prepare for post-challenge phase:

- what do we expect to have as a product from these efforts?
If papers, how many? In what time scale? With what focus?
- how to adapt the results for subsequent analysis with real data?

Extra slide

RAMP

Sandbox

You can either edit and save the code in the left column or upload the files in the right column. You can also import code from other submissions when the leaderboard links are open.

Edit and save your code!

ts_feature_extractor

```
1 import numpy as np
2 import xarray as xr
3 from sklearn.linear_model import LinearRegression
4
5 class FeatureExtractor(object):
6
7     def __init__(self):
8         pass
9
10    def transform(self, x_ds):
11        """Compute the monthly averages of the ice_area, corresponding to the month
12        The code could be simplified but in this way it is general, can be used for
13        variables as well."""
14        # This is the range for which features should be provided. Strip
15        # the burn-in from the beginning and the prediction look-ahead from
16        # the end.
17        valid_range = np.arange(x_ds.attrs['n_burn_in'], len(x_ds['time']))
18
19        # We convert the Dataset into a 4D DataArray
20        x_xr = x_ds.to_array()
```

regressor

Upload your files!

File list

 ts_feature_extractor.py

 regressor.py

Upload file

No file chosen

www.ramp.studio/events/sea_ice_M1XMAP583_201617/leaderboard

Hi Balazs! ▾

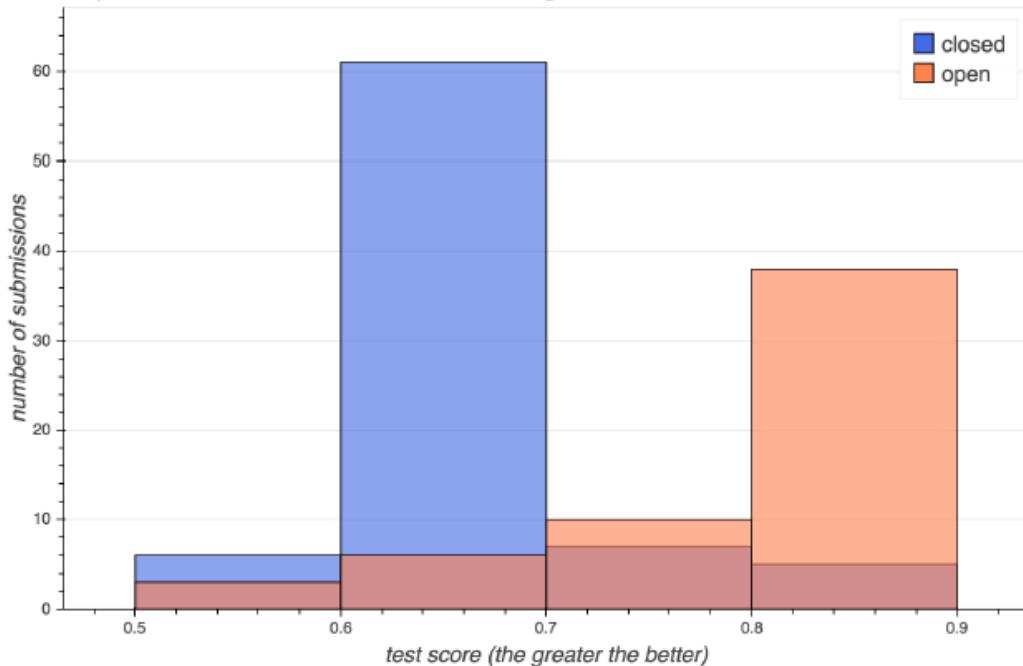
≡ RAMP

sea_ice_M1XMAP583_201617

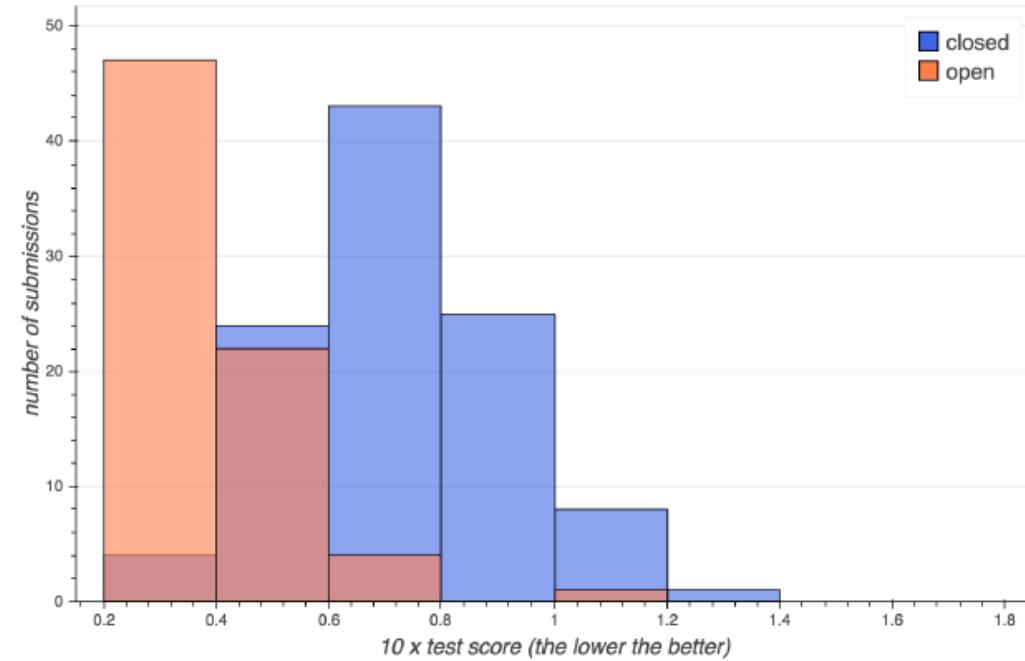
Leaderboard

Combined score: 0.268

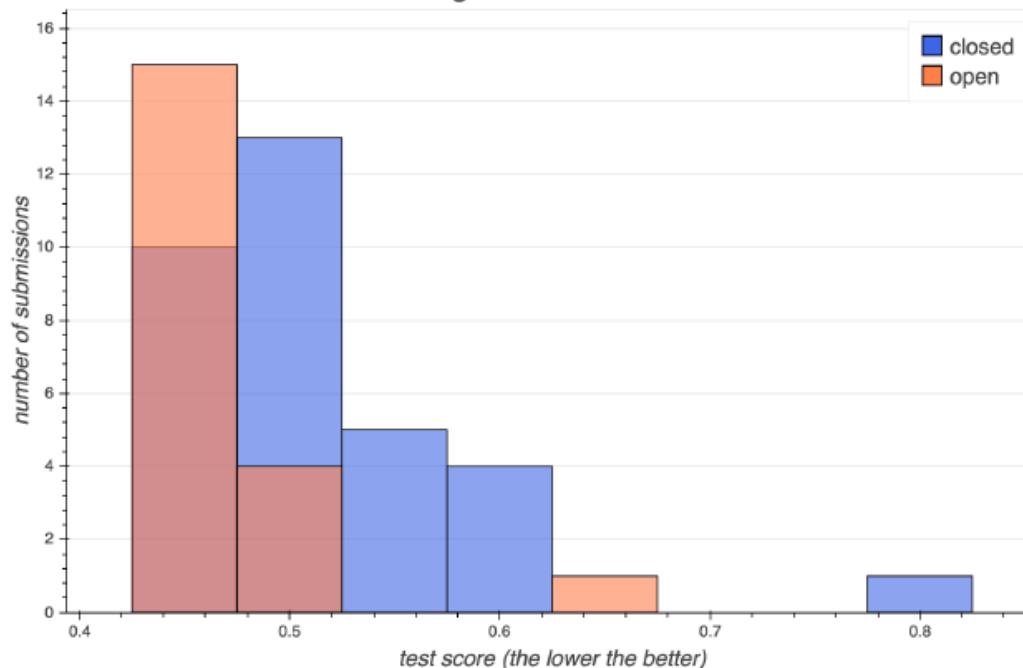
Show 10 entries Search:

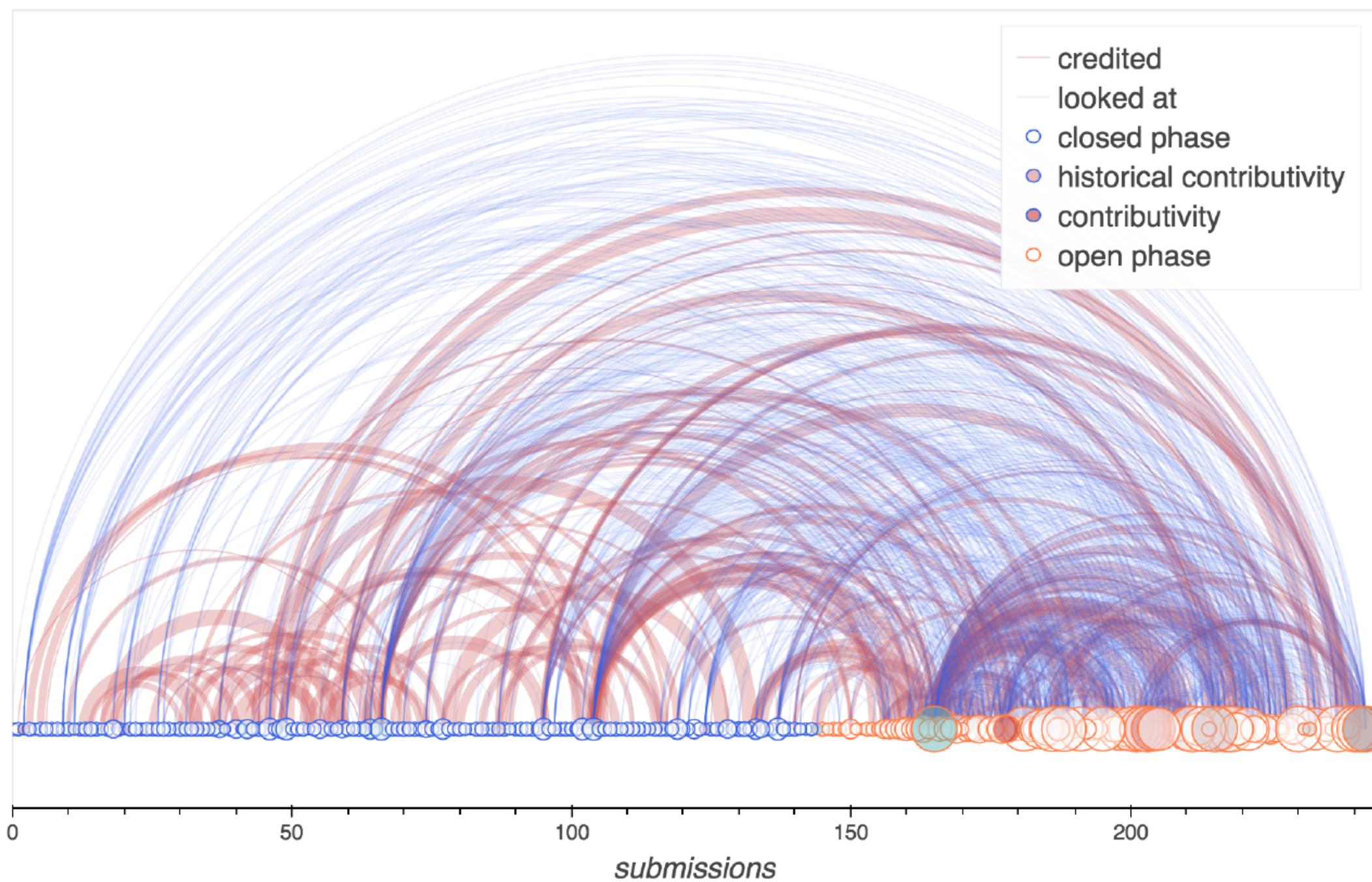

team	submission	contributivity	historical contributivity	rmse	train time	test time	submitted at (UTC)
joseph.budin	noName	26	3	0.279	286	3	2017-02-13 11:36:28 Mon
alexis.thual	timeseries	16	16	0.296	1	1	2017-02-13 17:48:47 Mon
julien.habis	try_hard3	11	8	0.300	475	3	2017-02-13 19:45:35 Mon
kangzheng.liang	thirdtry	7	7	0.291	8	1	2017-02-07 19:11:32 Tue
joseph.budin	LinReg	6	3	0.280	234	3	2017-02-13 11:25:39 Mon
gaetan.millerand	shifted+boost+nino	6	5	0.295	29	5	2017-02-04 21:04:11 Sat
thibaut.vasseur	starting_kit_help	4	4	0.289	17	9	2017-02-13 18:48:37 Mon
yu-jia.cheong	Last	3	3	0.289	18	7	2017-02-13 13:28:53 Mon
gaetan.millerand	random_test	3	3	0.295	30	5	2017-02-07 13:12:29 Tue
maxime.lapides	TestFinal	3	3	0.296	458	3	2017-02-13 17:44:37 Mon

Showing 1 to 10 of 172 entries


Previous 1 2 3 4 5 ... 18 Next

OPEN PHASE LETS PARTICIPANTS CATCH UP


Hep detector anomalies test score histograms


Drug spectra test score histograms

El nino forecast test score histograms

Hep detector anomalies submissions

