

RAFAEL MARTÍNEZ-GALARZA

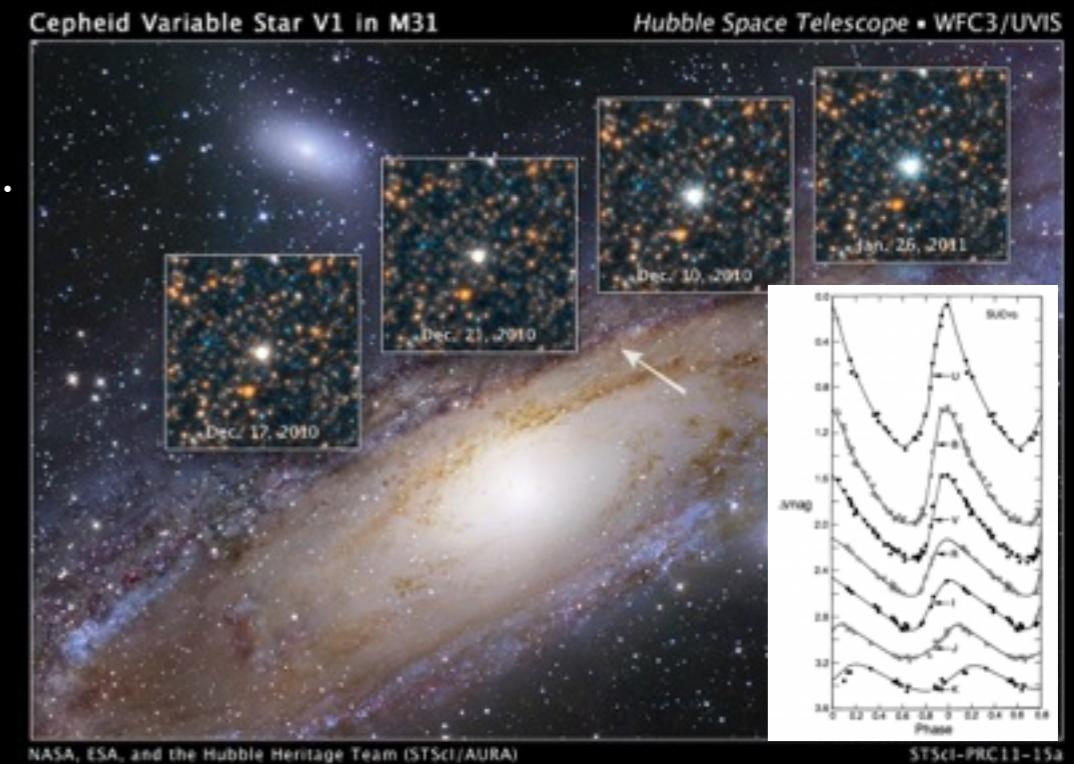
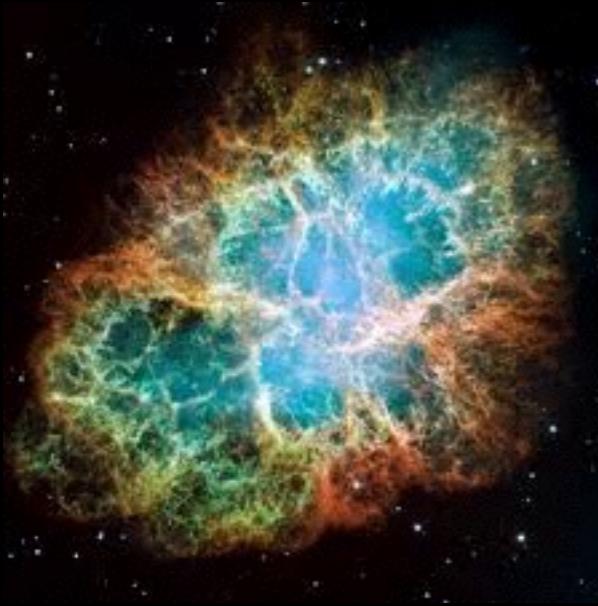
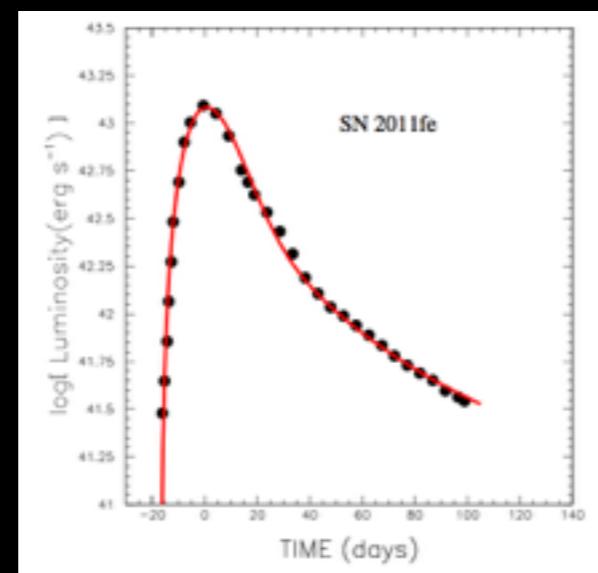
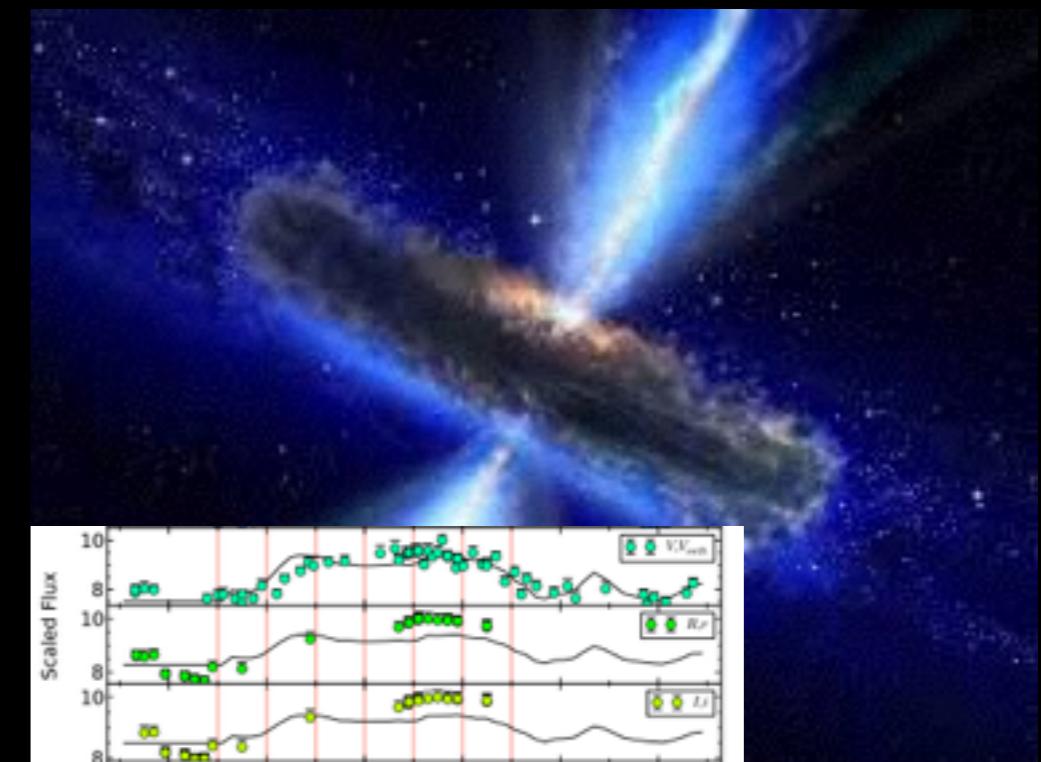
BUILDING A TRAINING SET FOR AN AUTOMATIC (LSST) LIGHT CURVE CLASSIFIER

WITH: JAMES LONG, CHRISTINA LINDBERG, VIRISHA TIMMARAJU,
JACKELINE MORENO, ASHISH MAHABAL, VIVEK KOVAR AND THE SAMS
WG2

HARVARD-SMITHSONIAN
CENTER FOR ASTROPHYSICS

CHALLENGE: VARIABILITY IS DIVERSE

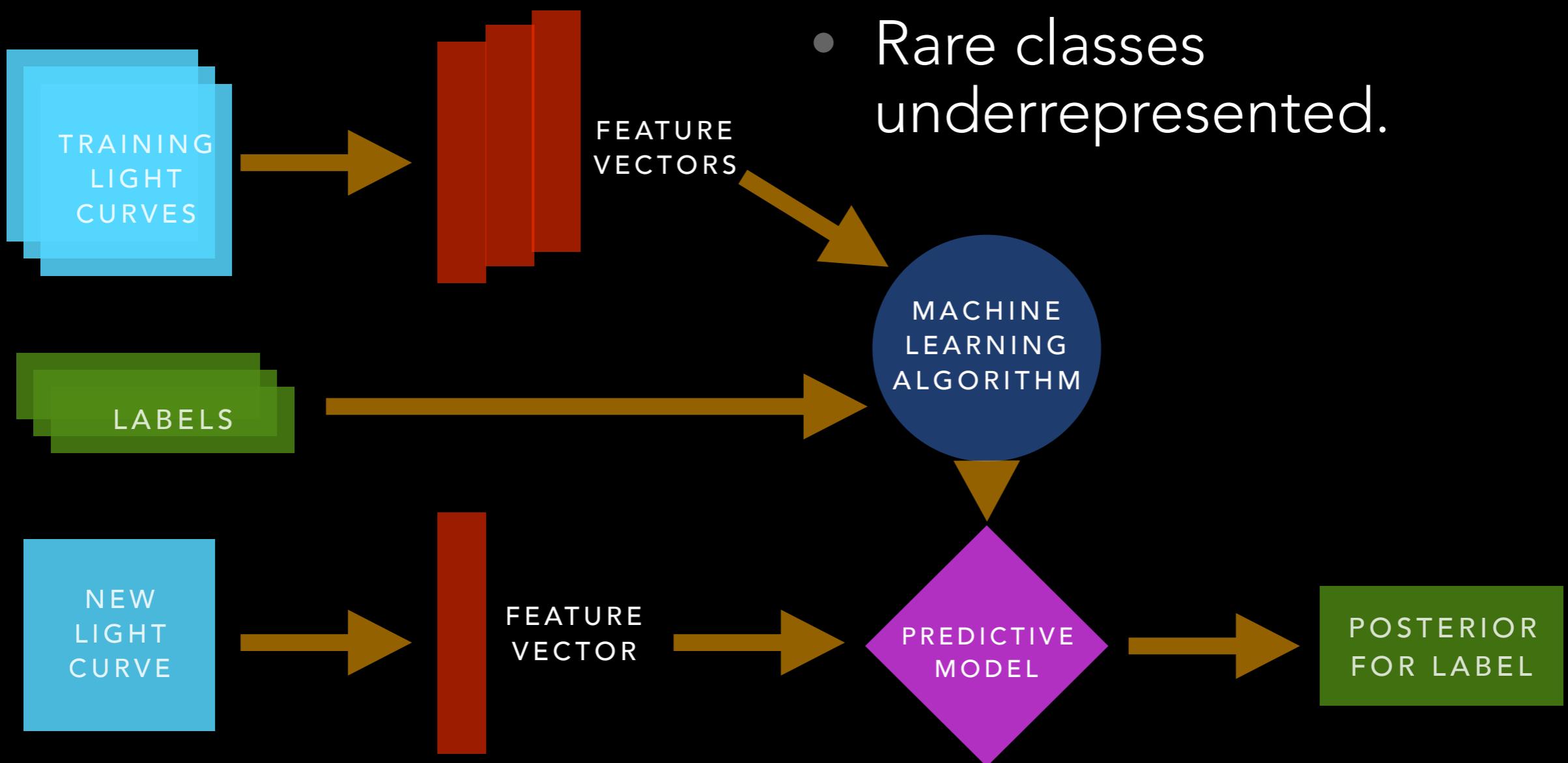
- Periodic (RR Lyrae stars, Cepheids)
 - Consistent in their periods and amplitudes.
- Quasi-periodic (Mira stars)
 - Dominating frequencies, but no consistency in phase or amplitude
- Stochastic (AGNs, QSOs)
 - Variability without any obvious patterns
- Transient (Supernovae, stellar flares, GRBs)
 - Short-time changes in flux, non periodic



WHERE CAN THINGS GO WRONG?

1. Training set

- Training set bias
- Only brightest or nearest sources have robust labels
- Rare classes underrepresented.



TRAINING SET BIAS



- Discrepancies in the period-amplitude plane: ASAS data has high density in the short period, high amplitude region. Testing data also has smaller values of the QSO-like variability metric.
- WE SHOULD BE ABLE TO MAKE PLOTS LIKE THIS FOR THE MODELS_{jj}

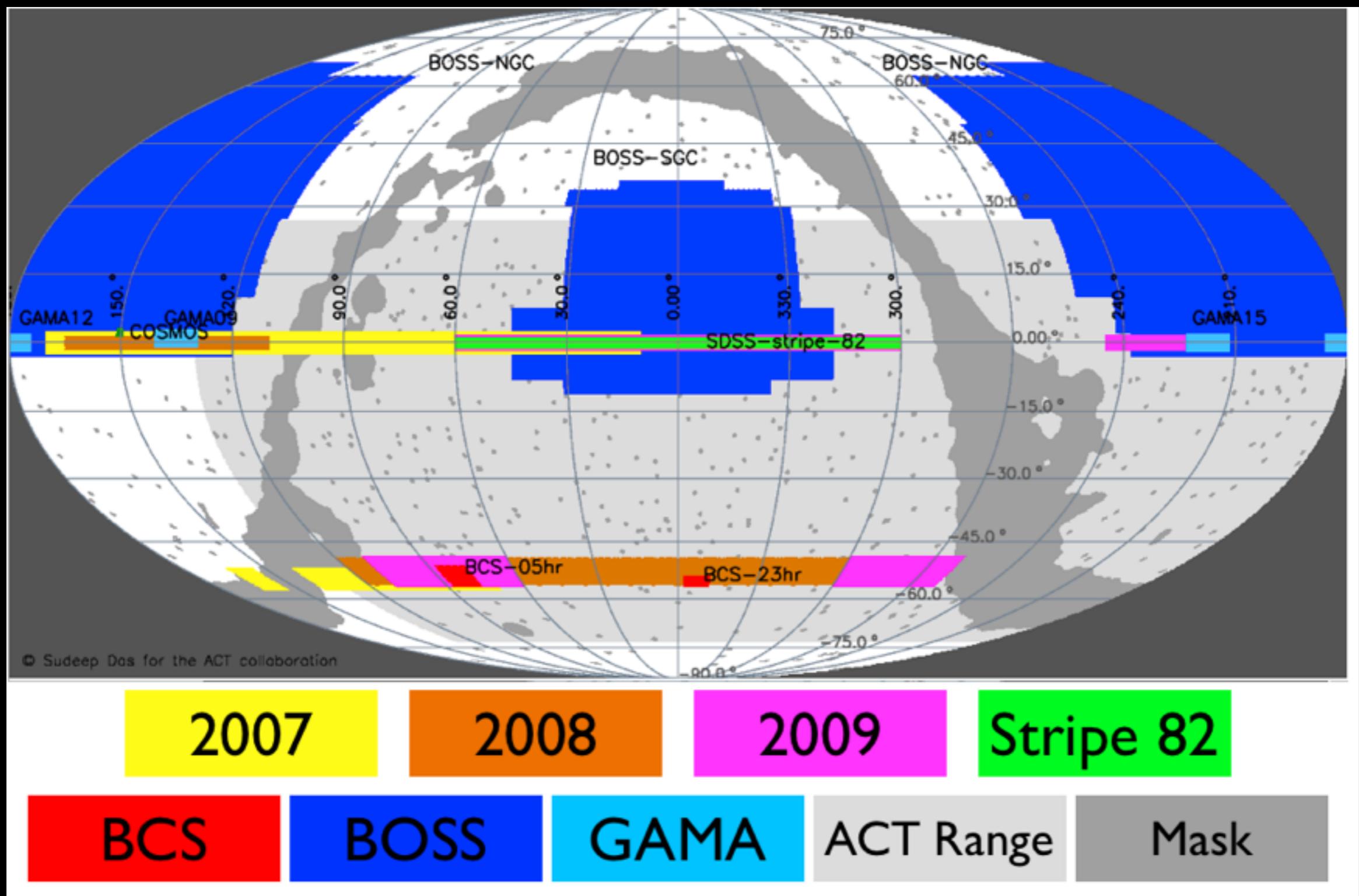
THE ASTRO PROGRAM

- Program on Statistical, Mathematical and Computational Methods for Astronomy.
- Several working groups, one of relevance to us:
 - Working Group II: Synoptic Time Domain Surveys
 - Subgroup 1: Data Challenge
 - Big questions:
 - Statistical approaches to characterize and quantify features. This should be applicable to data AND models.
 - Are there specific domain-knowledge based features that can be identified to improve class discrimination?
 - Advantages of a data-approach to the challenge

DATA VS. MODELS. PROS AND CONS

- How realistic are models? Do we have models for all kinds of transients, periodic, and stochastic sources? Do they properly account for outliers?
- Survey datasets can be complementary to models.
- But with models we know (in principle) the ground truth and can simulate any cadence.
- Can we somehow combine data and models to produce a more robust challenge? By attempting classification of datasets with a model-trained classifier? Or by checking models against outliers?

THE SDSS STRIPE 82



WE ARE BUILDING A TRAINING/TEST SET USING STRIPE 82 SOURCES

- The catalog has ~60K light curves in bands u,g,r,i,z, with about ~50 observations per LC.
- We have a github repository with code to download the dataset, gather existing literature labels, merge the classifications, and split the dataset into training and testing sets: <https://github.com/jpl2116/stripe82-class>
- We have also tested code to:
 - Inspect variability of sources, and make a census of the different source classes (QSOs, RR Lyrae, Delta Scuti, eclipsing binaries, etc.)
 - Perform feature extraction
 - Test supervised and unsupervised classification methods (random forests, K-means, clustering) - Next talk by Virisha.
 - Identify outliers, and discover the weirdest objects.

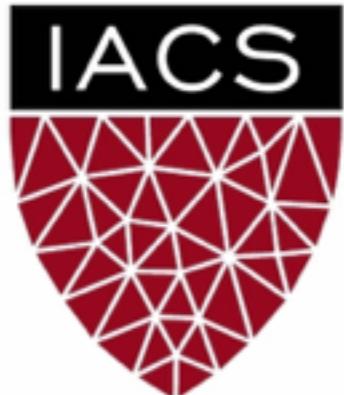
SOME NUMBERS

- Our catalog has ~60K sources.
- We have identified labels for ~10% of those sources. Here
- We are currently merging our Stripe 82 catalog with the CRTS, and the Richards et al. probabilistic catalog.

- QSOs: 86%
- RR Lyrae: 8%
- ew+ea+eb: 4.1%
- Delta Scuti: 1.5%

ACVS Class	ACVS Class										ACVS Class																		
	a. Mira	b1. Semireg PV	b2. SARG A	b3. SARG B	b4. LSP	c. RV Tauri	d. Classical Cephe	e. Pop. II Cepheid	f. Multi. Mode Cep	g. RR Lyrae, FM	h. RR Lyrae, FO	i. RR Lyrae, DM	j. Delta Scuti	l. SX Phe	i. Beta Cephei	o. Pulsating Be	p. RSG	q. Chem. Peculiar	r1. RCB	s1. Class. T Tauri	s2. Weak-line T Tauri	s3. RS CVn	t. Herbig Ae/Be	u. S Doradus	v. Ellipsoidal	w. Beta Persei	x. Beta Lyrae	y. W Ursae Maj.	
a. Mira	0.975	0.024																							2374				
d. Classical Cepheid		0.003	0.02			0.003	0.847	0.003		0.036														307					
e. Pop. II Cepheid	-0.016	0.032				0.016	0.063	0.032		0.143														63					
f. Multi. Mode Cepheid			0.021			0.292		0.146	0.188															48					
g. RR Lyrae, FM						0.002		0.968		0.002														0.002	1098				
h. RR Lyrae, FO								0.006	0.718	0.017	0.017													0.241	174				
j. Delta Scuti							0.043			0.645	0.023	0.007												0.28	304				
i. Beta Cephei										1														5					
q. Chem. Peculiar															1									43					
w. Beta Persei															0.001								0.971	0.024	0.003	1393			
x. Beta Lyrae		0.003	0.003	0.006						0.003	0.021					0.003		0.016	0.003				0.102	0.661	0.182	384			
y. W Ursae Maj.				0.002					0.004	0.003								0.002					0.064	0.923	2110				
MISC	-0.029	0.242	0.147	0.215	0.111	0.002	0.001		0.008	0.003	0.002	0.014		7	21	6	49	114	27	0	517	5	2	0	0	0.028	0.018	0.14	14906
	2751	3659	2193	3210	1662	40	300	3	9	1254	180	39	430	7	21	6	49	114	27	0	517	5	2	0	0	0.028	0.018	0.14	4235

A TOOL FOR FEATURE EXTRACTION



Institute for
Applied Computational Science
HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES

Feature Analysis for Time Series

Authors: Isadora Nun isadoranun@g.harvard.edu , Pavlos Protopapas pavlos@seas.harvard.edu

Contributors: Daniel Acuña, Nicolás Castro, Rahul Dave, Cristobal Mackenzie, Jorge Martinez, Adam Miller, Karim Pichara, Andrés Riveros, Brandon Sim and Ming Zhu

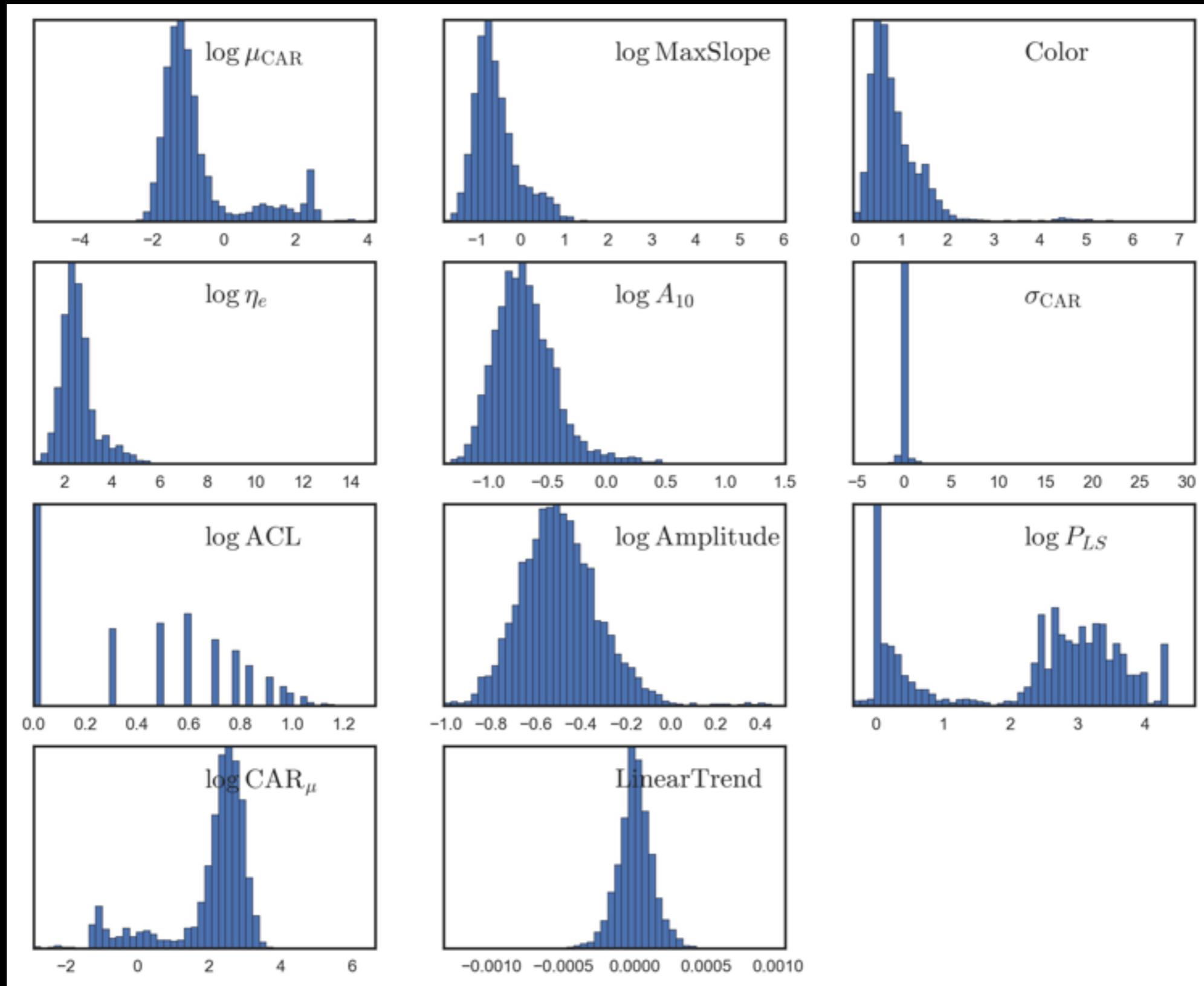
We want to improve this:

See: <http://isadoranun.github.io/tsfeat/FeaturesDocumentation.html>

EXTRACTING FEATURES FROM IRREGULAR TIME SERIES

TYPE	EXAMPLES	
VARIABILITY	$\eta = \frac{1}{(N-1)\sigma^2} \sum_{i=1}^{N-1} (m_{i+1} - m_i)^2$	$\kappa = \frac{N(N+1)}{(N-1)(N-2)(N-3)} \sum_{i=1}^N \left(\frac{m_i - \hat{m}}{\sigma} \right)^4 - \frac{3(N-1)^2}{(N-2)(N-3)}$
PERIODICITY	$y(t \omega, \theta) = \theta_0 + \sum_{n=1}^N [\theta_{2n-1} \sin(n\omega t) + \theta_{2n} \cos(n\omega t)].$	$A_{i,j} = \sqrt{a_{i,j}^2 + b_{i,j}^2}$ $\text{PH}_{i,j} = \arctan \left(\frac{b_{i,j}}{a_{i,j}} \right)$
REGRESSION	$dX(t) = -\frac{1}{\tau} X(t) dt + \sigma_C \sqrt{dt} \epsilon(t) + b dt$ <p>for $\tau, \sigma_C, t \geq 0$</p>	CAR(1) MODELS
MULTIBAND PROPERTIES	COLOR	$I = \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^n \left(\frac{b_i - \hat{b}}{\sigma_{b,i}} \right) \left(\frac{v_i - \hat{v}}{\sigma_{v,i}} \right)$

FEATURE EXTRACTION



RESULTS ON STRIPE 82 SOURCES

Period Extraction

Lomb Scargle Multiband: Finding periods for randomly sampled multiband light curves like LSST.

